Abstract
This paper develops a nonlocal strain gradient plate model for damping vibration analysis of smart piezoelectric polymeric nanoplates resting on visco-Pasternak medium. For more accurate analysis of piezoelectric nanoplate, the proposed theory contains two scale parameters related to the nonlocal and strain gradient effects. Viscoelastic effect is considered based on Kelvin–Voit model. Governing equations of a nonlocal strain gradient smart nanoplate on viscoelastic substrate are derived via Hamilton’s principle. Galerkin’s method is implemented to solve the governing equations. Effects of different factors such as viscoelasticity, nonlocal parameter, length scale parameter, applied voltage and Winkler–Pasternak parameters on damping vibration characteristics of a nanoplate are studied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.