Abstract

We present a theoretical and experimental study of the damping process of the atomic velocity in Sisyphus cooling. The relaxation rates of the atomic kinetic temperature are determined for a 3D lin$\perp$lin optical lattice. We find that the damping rates of the atomic temperature depend linearly on the optical pumping rate, for a given depth of the potential wells. This is at variance with the behavior of the friction coefficient as calculated from the spatial diffusion coefficients within a model of Brownian motion. The origin of this different behavior is identified by distinguishing the role of the trapped and traveling atoms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call