Abstract

Dissipation of standing gravity waves of frequencies within 1–2 Hz is investigated experimentally. The waves are generated in a rectangular tank filled with water, the surface of which is covered with an oil layer of mean thickness, d. Damping rates are measured as a function of d, and compared with results from established theoretical models—in particular, with those from a recently developed three-fluid dissipation model that considers waves in a system of semi-infinitely deep fluids that lie above and below an interfacial fluid layer of finite thickness. Based on a comparison of experimental data with predictions, the oil–water interfacial elasticity, E2, is empirically determined to be a linear function of d. The theoretical predictions include contributions from the three-fluid dissipation model, which accounts for energy losses due to shear layers at the interfaces, friction in the fluid bulk, and compression–expansion oscillations of the elastic interfaces; and from a boundary-layer dissipation model, which accounts for energy losses due to boundary layers at the tank's solid surfaces. The linear function, E2(d), is used to compute the three-fluid model damping rate. An effective viscosity of the oil–water system is used to compute the boundary-layer model damping rate. The theoretical predictions are, on average, within 5% of measurements for all the wave frequencies considered. The promise shown by the three-fluid model is highlighted, as are the assumptions involved in the analysis and comparisons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call