Abstract

The effect of the interface structure between the matrix and the particle on the damping capacity was investigated using Mg–Zn and Mg–Zn–Y alloys in this study. The damping capacity was not affected by the interface structure at room temperature. However, the onset of temperature, which was higher in the Mg–Zn–Y alloy than in the Mg–Zn alloy despite their similar grain sizes, increased the damping capacity through grain boundary relaxation by grain boundary sliding. Compared to the Mg–Zn alloy, the existence of the quasicrystal phase particles, which had the coherent interface with low interface energy, was likely to have suppressed and delayed the grain boundary sliding in the Mg–Zn alloy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call