Abstract

This paper proposes to utilize intentional time delays as part of controllers to improve the damping of electromechanical oscillations of power systems. Through stability theory, the control parameter settings for which these delays in Power System Stabilizers (PSSs) improve the small signal stability of a power system are systematically identified, including the key parameter settings for which stability regions in the parameter plane remain connected for effective operation. The paper shows that PSSs with two control channels can be effectively designed to achieve best damping characteristics for a wide range of delays. Analytical results are presented on the One-Machine Infinite-Bus (OMIB) electromechanical power system model. To demonstrate the opportunities in more realistic dynamic models, our results are then implemented via numerical analysis on the IEEE standard 14-bus system.

Highlights

Read more

Summary

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call