Abstract

The rapid solidification of Fe-17%Mn alloy was performed to investigate the influence of cooling rate on its damping performance and martensitic transformation mechanism. A proper heat treatment was also carried out to clarify its coupled effects with rapid solidification. The stacking fault probability and martensitic transformation temperature were determined to demonstrate their relationship with the cooling rate and the heat treatment process. With the increase of cooling rate, the volume fraction of ε-martensite increased and the stacking fault probability of ε-martensite was enhanced. The formation of ε-martensite phase was remarkable for the increase of damping capacity and microhardness. It was found that rapid solidification was beneficial for the formation of ε-martensite and the improvement of damping capacity. This effect can be facilitated by the incorporation of the heat treatment process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call