Abstract
Abstract Two-phase internal flow is present in many piping system components. Although two-phase damping is known to be a significant constituent of the total damping, the energy dissipation mechanisms that govern two-phase damping are not well understood. In this paper, damping of three different clamped–clamped tubes subjected to two-phase air–water internal axial flow is investigated. Experimental data are reported, showing a strong dependence of two-phase damping on void fraction, flow velocity and flow regime. Data-points plotted on two-phase flow pattern maps indicate that damping is greater in a bubbly flow regime. The two-phase damping ratio reaches a maximum value at the highest void fraction before the transition to a churn flow regime. An analytical model that relates the two-phase damping ratio to the interface surface area is proposed. The model is based on rigid spherical bubbles in cubic elementary flow volumes. The analytical results are well correlated with the experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.