Abstract

In the present paper, the asymptotic solution of modal damping ratio of stay cable-passive damper system with the influence of cable bending stiffness and damper stiffness was derived. Maximum modal damping ratio and corresponding optimal damping coefficient, which indicated the relationships of the characteristics of the damper and the cable bending stiffness was theoretically analyzed to obtain their close solutions. On the basis of these close solutions, numerical analysis of modal damping of stay cable-passive damper system with the effects of cable bending stiffness and damper stiffness was conducted. The numerical and analytical results show that the maximum modal damping ratio decrease and the corresponding damping coefficient increase, when considering the influence of the damper stiffness and the cable bending stiffness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.