Abstract

Mesh-induced errors at material interfaces are identified as a source of unphysical behaviour in Lagrangian numerical simulations of Richtmyer-Meshkov instability. The mesh geometry introduces interface perturbations with wavelengths of the same order as the mesh resolution. When a shock propagates through the interface, these perturbations can grow, severely contaminating the predicted interface development. Here an algorithm is presented which damps small-scale interface perturbations. A body force is applied at the interface which depends upon the disturbance amplitude and growth rate, and which resembles surface tension. Using this technique, qualitative improvements are obtained in Free-Lagrange simulations of single-mode Richtmyer-Meshkov instability. Growth rate behaviour and the evolution of the instability are seen to agree well with previously published results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.