Abstract

The evolution of macroscopic magnetohydrodynamic disturbances across a magnetic field is studied, with particular attention to the effect of multiple ion species. Analyses are carried out on disturbances where the initial magnetic profiles are sinusoidal. Both the theory and electromagnetic simulations show that, in a single-ion-species plasma, the disturbance is undamped, with its energy oscillating between the magnetic field and ion velocity. In a multi-ion-species plasma, however, it is initially damped, owing to the phase mixing of the magnetosonic mode and the modes having ion-ion hybrid cutoff frequencies. Furthermore, it is found from long-time simulations that the amplitude of the disturbance continues to decrease in a multi-ion-species plasma. This is due to nonlinear mode couplings. The magnetic energy is irreversibly transferred to the ions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.