Abstract

We consider the damping of large-amplitude solitary waves in the framework of the extended Korteweg-de Vries equation (that is, the usual Korteweg-de Vries equation supplemented with a cubic nonlinear term) modified by the inclusion of a small damping term. The damping of a solitary wave is studied for several different forms of friction, using both the analytical adiabatic asymptotic theory and numerical simulations. When the coefficient of the cubic nonlinear term has the opposite sign to the coefficient of the linear dispersive term, the extended Kortweg-de Vries equation can support large-amplitude “thick” solitary waves. Under the influence of friction, these “thick” solitary waves decay and may produce one or more secondary solitary waves in this process. On the other hand, when the coefficient of the cubic nonlinear term has the same sign as the coefficient of the linear dispersive term, but the opposite sign to the coefficient of the quadratic nonlinear term, the action of friction may cause a solitary wave to decay into a wave packet.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.