Abstract

The dynamical description of correlated nuclear motion is based on a set of coupled equations of motion for the one-body density matrix ϱ(11′; t) and the two-body correlation function c 2(12, 1′2′; t), which is obtained from the density-matrix hierarchy beyond conventional mean-field approaches by truncating three-body correlations. The resulting equations non-perturbatively describe particle-particle collisions (short-range correlations) as well as particle-hole interactions (long-range correlations). Within a basis of time-dependent Hartree-Fock states these equations of motion are solved for collective vibrations of 40Ca at several finite thermal excitation energies corresponding to temperatures T = 0 – 6 MeV. Transport coefficients for friction and diffusion are extracted from the explicit solutions in comparison to the solutions of the associated TDHF, VUU, Vlasov or damped quantum oscillator equations of motion. We find that the actual magnitude of the transport coefficients is strongly influenced by particle-hole correlations at low temperature which generate large fluctuations in the nuclear shape degrees of freedom. Thermodynamically, the specific heat and the entropy of the system as a function of temperature does not differ much from the mean-field limit except for a bump in the specific heat around T ⋍ MeV which we attribute to the melting of shell effects in the correlated system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.