Abstract

Alfvénic component of MHD turbulence damps Alfvénic waves. The consequences of this effect are important for many processes, from cosmic ray (CR) propagation to launching outflows and winds in galaxies and other magnetized systems. We discuss the differences in the damping of the streaming instability by turbulence and the damping of a plane parallel wave. The former takes place in the system of reference aligned with the local direction of magnetic field along which CRs stream. The latter is in the reference frame of the mean magnetic field and traditionally considered in plasma studies. We also compare the turbulent damping of streaming instability with ion-neutral collisional damping, which becomes the dominant damping effect at a sufficiently low ionization fraction. Numerical testing and astrophysical implications are also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call