Abstract

Abstract In this technical brief, the experimental study and model validations for the damping mechanisms of cable-harnessed beam structures are presented. The structure consists of cables wrapped around a host beam in a periodic zigzag pattern. A special case of cable attached along the beam length over its centerline is also considered. First, material damping in the cables is characterized using dynamic tests and the relevant cable damping factors are calculated for both the Kelvin–Voigt and hysteretic damping models. Experimental modal testing is then performed on the fabricated cable-harnessed beams to obtain the frequency response functions (FRFs). Finally, the experimental FRFs are compared with the damped analytical models. The test and model results are shown to be in very good agreements in predicting the structural damping induced by the cables.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.