Abstract
In a massive multiple-input multiple-output (MIMO) system, belief propagation (BP) detection is known as a method to separate and detect received signals. In BP detection, a MIMO channel is represented by a factor graph and the transmitted symbols are estimated by message passing. However, the convergence property of BP deteriorates due to multiple loops included in the MIMO channel. As a method to improve the convergence property and the detection performance, the damped BP that averages two successive messages with a weighing factor (called damping factor) is known. To train the damping factors off-line for each antenna configuration, deep neural network-based damped BP (DNN-dBP) has been reported. The problem with DNN-dBP is that the detection performance deteriorates when there is a difference in the channel correlation between training and test. This is because the optimal damping factors vary with the channel correlation. In this paper, to solve this issue, we derive the damping factors of BP with the node selection (NS) method that selects nodes to be updated to lower spatial correlation using DNN-dBP. By applying the NS method, the channel correlation among the selected nodes in BP detection is lowered. Therefore, the proposed method can reduce the detection performance deterioration due to the mismatches of the channel correlations between training and test in DNN-dBP. In addition, the convergence property of BP is improved by applying the NS method. Therefore, the proposed method can improve the detection performance compared to the conventional DNN-dBP with the same computational complexity. By computer simulation, it is shown that the proposed method significantly reduces the bit error rate (BER) performance deterioration due to the mismatches of the channel correlations between training and test in DNN-dBP. The results also show that the proposed method has the better BER performance than the conventional DNN-dBP with the same computational complexity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.