Abstract

The damping property of materials can be defined as the ratio of dissipated energy over the total strain energy during the loading–unloading process, called the specific damping capacity (SDC). In this study, in order to characterize the damping properties of materials, a test plan in designed to extract the SDC of a single layer composite from hysteresis data. The theory of linear viscoelasticity incorporates a varying Young’s Modulus by using a complex stiffness modulus. Considering different lay-ups, the modified classical lamination plate theory is modified to represent both stiffness and SDC of laminates. The results are compared with experimental results for symmetric laminated specimen. This evaluation shows a very good agreement between theoretical and experimental results in the range of low frequency loading from 0.2 to 4 Hz. The complex compliance matrix changes the governing equation in to a complex form which contains both stiffness and damping properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.