Abstract
This paper presents the damping characteristics of a linear magneto-rheological (MR) damper with dual controllable ducts based on numerical and experimental analysis. The novel MR damper consisting of a dual-rod cylinder system and a MR valve is used to reduce the influences of viscous damping force and improve dynamic range. Driven by the dual-rod cylinder system, MR fluid flows in the MR valve. The pressure drop of the MR valve with dual independent controllable ducts can be controlled by tuning the current of two independent coils. Based on the mathematical model and the finite element method, the damping characteristics of the MR damper is simulated. A prototype is designed and tested on MTS machine to evaluate its damping characteristics. The results show that the working states and damping force of the MR damper can be controlled by the two independent coils.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Intelligent Material Systems and Structures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.