Abstract

Damping behavior of Ti50.1Ni49.9 shape memory alloy during reverse martensitic transformation has been investigated by dynamic mechanical analyzer in a dual-cantilever mode. With the increase of strain amplitude, internal friction (IF) of the alloy increases in martensite and austenite states while decreases in transformation region. Based on the regularity of IF attenuation in isothermal condition, IFTr and (IFPT+ IFI) are decomposed from the strain amplitude dependent IF in transformation region. For practical application of shape memory alloys as a damping material, it is significant to evaluate the damping capacity by eliminating the influence of IFTr and consider its time independent real IF (IFPT+ IFI).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.