Abstract

Polyvinylidene fluoride (PVDF) is a piezoelectric polymer that has been used in many applications including microphones, transducers, sensors and actuators. The electromechanical properties of PVDF are commonly defined by the constitutive equations of piezoelectricity. This paper presents experimental evidence that the assumptions underlying the theory of piezoelectricity have certain limitations in terms of representing adequately the electromechanical properties of PVDF. It is shown that PVDF tends to demonstrate time-dependent behavior in the form of viscoelastic creep and dielectric relaxation, and measurable energy losses under cyclic loading conditions. Moreover, the response of PVDF strongly depends on temperature and cyclic frequencies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.