Abstract

The behavior of acoustic waves in a rarefied high-temperature plasma is studied; as an example, the plasma of the solar corona is considered. Effects of thermal conductivity and a heating/radiative loss are taken into account; data on a temperature distribution of a radiation intensity obtained from the CHIANTI 10 code are used. The classical Spitzer expression for a full-ionized plasma is used for the thermal conductivity. Based on the found values of the radiation-loss function, the cubic spline method is used to construct an approximate analytical expression necessary for studying linear waves. A dispersion relation is obtained, and a frequency, a phase speed, and a damping coefficient are found. Dispersion and damping properties are considered for a temperature of about 106 K and a particle density of about 1015m−3, which are typical for the coronal plasma. In sum, superiority in the dispersion and damping of the thermal conduction is shown; the heating and radiation loss manifest themselves at large wavelengths. In accordance with general results by Field, a condition was found under which the acoustic oscillations become unstable. It is shown that at certain values of the temperature and density, the wave damping is dominated by the heating/radiative loss misbalance. Thus, the earlier results on mechanisms of damping of observed acoustic waves in the solar corona are refined here.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call