Abstract

An increase in biological diversity leads to a greater stability of ecosystem properties. For host-parasite interactions, this is illustrated by the 'dilution effect': a negative correlation between host biodiversity and disease risk. We show that a similar mechanism might stabilise host-parasite dynamics at a lower level of diversity, i.e. at the level of genetic diversity within host species. A long-term time shift experiment, based on a historical reconstruction of a Daphnia-parasite coevolution, reveals infectivity cycles with more stable amplitude in experienced than in naive hosts. Coevolutionary models incorporating an increase in host allelic diversity over time explain the detected asymmetry. The accumulation of resistance alleles creates an opportunity for the host to stabilise Red Queen dynamics. It leads to a larger arsenal enhancing the host performance in its coevolution with the parasite in which 'it takes all the running both antagonists can do to keep in the same place'.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.