Abstract

This study reports on the design, development and testing of a fiber optic Bragg grating (FBG)-based tiltmeter. The tiltmeter design is based on the correlation between the bending strains and rotations of a lumped mass ended cantilever beam. The design of the system includes incorporation of a damping fluid to control the dynamic response. Temperature compensation for the sensor was achieved by using two symmetrically placed FBGs for cancellation of thermal effects. The tiltmeter is designed to exhibit linearity over the range of measurements common in low-frequency vibrations in bridges and exhibits measurement resolution of 0.005°. The study reports on the static calibration tests, correlations with the theoretical relationships, and dynamic characterization and response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.