Abstract

Nonlinear properties of ion acoustic solitary waves are studied in the case of dense magnetized plasmas. The degenerate electrons with relative density effects from their spin states in the same direction and from equally probable up and down spinning states are taken up separately. Quantum statistical as well as quantum tunneling effects for both types of electrons are taken. The ions have large inertia and are considered classically, whereas the electrons are degenerate. The collisions of ions and electrons with neutral atoms are considered. We derive the deformed Korteweg de–Vries (DKdV) equation for small amplitude electrostatic potential disturbances by employing the reductive perturbation technique. The Runge–Kutta method is applied to solve numerically the DKdV equation. The analytical solution of DKdV is also presented with time dependence. We discuss the profiles for velocity, amplitude, and time variations in solitons for the cases when all the electrons are spinning in the same direction and for the case when there is equal probability of electrons having spin up and spin down. We have found that the wave is unstable because of the collisions between neutral gas molecules and the charged plasmas particles in the presence of degenerate electrons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.