Abstract

Daminozide is a well-known chemical inhibitor of the gibberellic acid biosynthesis pathway regulating the vegetative growth of potted chrysanthemums (Chrysanthemum morifolium Ramat.). However, the precise mechanism underlying daminozide-related floral color loss is unknown. To investigate the latter, in two separate greenhouse experiments, bronze flowering chrysanthemum cultivars ‘Baton Rouge’ and ‘Pelee’ were treated weekly with consecutive (0 or 5,000 mg l−1) foliar daminozide spray applications at early, intermediate, and late stages during the short-day photoperiod. The ray florets of both cultivars were sampled, and the effect of daminozide application on anthocyanins and their biosynthetic precursors were determined by HPLC. Daminozide applied to ‘Baton Rouge’ plants at early developmental stages was correlated with partial loss of red color, and HPLC analysis determined that this was associated with a 75 % reduction in ray floret anthocyanins. Conversely, a near complete loss of red coloration in daminozide-sprayed ‘Pelee’ relative to control plants was associated with as much as a 98 % decline in anthocyanins, irrespective of the time of application. HPLC analysis determined that daminozide application was associated with a 22–50 % increase in the flavones apigenin 7-O-rutinoside, acacetin 7-O-rutinoside, diosmetin 7-O-rutinoside, and eupatorin, and a 68 % increase in the flavonol quercetin 3-O-glucoside, in ray florets of ‘Pelee’ relative to control plants. There was no relative change in ‘Baton Rouge’ flavone and flavonol levels. The accumulation of bronze C. morifolium flavones and flavonols following foliar daminozide application suggests that red color loss is associated with inhibition of anthocyanidin synthase of ‘Pelee’ ray florets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call