Abstract

Plants require reliable mechanisms to detect injury. Danger signals or “damage-associated molecular patterns” (DAMPs) are released from stressed host cells and allow injury detection independently of enemy-derived molecules. We studied the response of common bean (Phaseolus vulgaris) to the application of leaf homogenate as a source of DAMPs and measured the production of reactive oxygen species (ROS) as an early response and the secretion of extrafloral nectar (EFN) as a jasmonic acid (JA)-dependent late response. We observed a strong taxonomic signal in the response to different leaf homogenates. ROS formation and EFN secretion were highly correlated and responded most strongly to leaf homogenates produced using the same cultivar or closely related accessions, less to a distantly related cultivar of common bean or each of the two congeneric species, P. lunatus and P. coccineus, and not at all to homogenates prepared from species in different genera, not even when using other Fabaceae. Interestingly, leaf homogenates also reduced the infection by the bacterial pathogen, Pseudomonas syringae, when they were applied directly before challenging, although the same homogenates exhibited no direct in vitro inhibitory effect in the bacterium. We conclude that ROS signaling is associated to the induction of EFN secretion and that the specific blend of DAMPs that are released from damaged cells allows the plant to distinguish the “damaged-self” from the damaged “non-self.” The very early responses of plants to DAMPs can trigger resistance to both, herbivores and pathogens, which should be adaptive because injury facilitates infection, independently of its causal reason.

Highlights

  • Like all multicellular organisms, plants require efficient mechanisms to detect injury

  • Most of these molecules are recognized by pattern recognition receptors (PRRs), which induce a signaling cascade that normally consists of Ca2+-influxes and the corresponding membrane depolarization events, the generation of reactive oxygen species (ROS) such as the superoxide anion (O2−), hydrogen peroxide (H2O2) or the hydroxyl radical (·OH), and downstream signaling via mitogen-associated protein kinase (MAPK) cascades (Wu and Baldwin, 2010)

  • These extracts induced a significant response over control levels, they did not induce extrafloral nectar (EFN) secretion more strongly than mechanical damage (MD) inflicted by a needle

Read more

Summary

Introduction

Plants require efficient mechanisms to detect injury. Effector molecules that are secreted by adapted pathogens to overcome the plant resistance response can be perceived as strain-specific PAMPs and cause effector-triggered immunity (Jones and Dangl, 2006). Most of these molecules are recognized by pattern recognition receptors (PRRs), which induce a signaling cascade that normally consists of Ca2+-influxes and the corresponding membrane depolarization events, the generation of reactive oxygen species (ROS) such as the superoxide anion (O2−), hydrogen peroxide (H2O2) or the hydroxyl radical (·OH), and downstream signaling via mitogen-associated protein kinase (MAPK) cascades (Wu and Baldwin, 2010)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call