Abstract
With the rapid development of earth observation technology, remote sensing images have played more important roles, because the high resolution images can provide the original data for object recognition, disaster investigation, and so on. When a disastrous earthquake breaks out, a large number of roads could be damaged instantly. There are a lot of approaches about road extraction, such as region growing, gray threshold, and k-means clustering algorithm. We could not obtain the undamaged roads with these approaches, if the trees or their shadows along the roads are difficult to be distinguished from the damaged road. In the paper, a method is presented to extract the damaged road with high resolution aerial image of post-earthquake. Our job is to extract the damaged road and the undamaged with the aerial image. We utilized the mathematical morphology approach and the k-means clustering algorithm to extract the road. Our method was composed of four ingredients. Firstly, the mathematical morphology filter operators were employed to remove the interferences from the trees or their shadows. Secondly, the k-means algorithm was employed to derive the damaged segments. Thirdly, the mathematical morphology approach was used to extract the undamaged road; Finally, we could derive the damaged segments by overlaying the road networks of pre-earthquake. Our results showed that the earthquake, broken in Yaan, was disastrous for the road, Therefore, we could take more measures to keep it clear.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.