Abstract

In this work an extension of the adaptive-elasticity theory is proposed in order to include the contribution of bone microdamage as a stimulus. Some aspects of damaged-bone tissue adaptation, brought about by a change of the daily loading history, are investigated. In particular, under the assumption of a small strain approximation and isothermal conditions, the solution of the remodeling rate equation for steady homogeneous stress is discussed and the damage effect upon the remodeling time constant is shown. The result is both theoretical and numerical, based on a recent theory of internal damaged-bone remodeling (Ramtani, S., and Zidi, M., 1999, "Damaged-Bone Remodeling Theory: Thermodynamical Approach, " Mechanics Research Communications, Vol. 26, pp. 701-708. Ramtani, S., and Zidi, M., 2001, "A Theoretical Model of the Effect of Continum Damage on a Bone Adaption Model," Journal of Biomechanics, Vol. 34, pp. 471-479) and motivated by the works of Cowin, S. C., and Hegedus, D. M., 1976, "Bone Remodeling I: Theory and Adaptive Elasticity," Journal of Elasticity, Vol. 6, pp. 471-479 and Hegedus, D. H., and Cowin, S. C., 1976, "Bone Remodeling II: Small Strain Adaptive Elasticity," Journal of Elasticity, Vol. 6, pp. 337-352.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call