Abstract

BackgroundChemotherapeutics can stimulate immune antitumor response by inducing immunogenic cell death (ICD), which is activated by Damage-Associated Molecular Patterns (DAMPs) like the exposure of calreticulin (CRT) on the cell surface, the release of ATP and the secretion of High Mobility Group Box 1 (HMGB1).MethodsHere, we investigated the levels of ICD-associated DAMPs induced by chemotherapeutics commonly used in the clinical practice of non-small cell lung cancer (NSCLC) and the association of these DAMPs with apoptosis and autophagy. A549 human lung adenocarcinoma cells were treated with clinically relevant doses of cisplatin, carboplatin, etoposide, paclitaxel and gemcitabine. We assessed ICD-associated DAMPs, cell viability, apoptosis and autophagy in an integrated way.ResultsCisplatin and its combination with etoposide induced the highest levels of apoptosis, while etoposide was the less pro-apoptotic treatment. Cisplatin also induced the highest levels of ICD-associated DAMPs, which was not incremented by co-treatments. Etoposide induced the lower levels of ICD and the highest levels of autophagy, suggesting that the cytoprotective role of autophagy is dominant in relation to its pro-ICD role. High levels of CRT were associated with better prognosis in TCGA databank. In an integrative analysis we found a strong positive correlation between DAMPs and apoptosis, and a negative correlation between cell number and ICD-associated DAMPs as well as between autophagy and apoptosis markers. We also purpose a mathematical integration of ICD-associated DAMPs in an index (IndImunnog) that may represent with greater biological relevance this process. Cisplatin-treated cells showed the highest IndImmunog, while etoposide was the less immunogenic and the more pro-autophagic treatment.ConclusionsCisplatin alone induced the highest levels of ICD-associated DAMPs, so that its combination with immunotherapy may be a promising therapeutic strategy in NSCLC.

Highlights

  • Chemotherapeutics can stimulate immune antitumor response by inducing immunogenic cell death (ICD), which is activated by Damage-Associated Molecular Patterns (DAMPs) like the exposure of calreticulin (CRT) on the cell surface, the release of Adenosine trihosphate (ATP) and the secretion of High Mobility Group Box 1 (HMGB1)

  • Cisplatin alone induced the highest levels of ICD-associated DAMPs, so that its combination with immunotherapy may be a promising therapeutic strategy in nonsmall cell lung cancer (NSCLC)

  • Low levels of CRT are associated with poor prognosis and high tumor grade in NSCLC adenocarcinoma Considering the potential of ICD-associated DAMPs as biomarkers of prognosis and response to therapy, we found that high levels of CRT are associated to a better prognosis in NSCLC in the TCGA cohort (Additional file 5: Fig. S5A)

Read more

Summary

Introduction

Chemotherapeutics can stimulate immune antitumor response by inducing immunogenic cell death (ICD), which is activated by Damage-Associated Molecular Patterns (DAMPs) like the exposure of calreticulin (CRT) on the cell surface, the release of ATP and the secretion of High Mobility Group Box 1 (HMGB1). Lung cancer is the leading cause of cancer mortality worldwide [1]. These malignant tumors have two main clinical types: small cell lung cancer (SCLC) and nonsmall cell lung cancer (NSCLC) [2]. Adenocarcinoma, squamous cell carcinoma and large cell carcinoma constitute the subtypes of NSCLC [3]. This disease has a poor prognosis due to late diagnosis, resistance to chemotherapy and complications in advanced stages including high rates of metastasis, with an overall 5-year survival rate from 10 to 15% [1, 4]. Recent studies have demonstrated that some chemotherapeutics like doxorubicin, oxaliplatin, bleomycin and mitoxantrone as well as other non-chemical therapies like irradiation, photodynamic therapy and high hydrostatic pressure induce ICD in cancer cells [12,13,14,15,16]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call