Abstract

This work focuses on the impact damage evaluation of a carbon fiber-reinforced thermoset composite at a component level (beams) as an effort to develop the service strategies for this class of materials. The beams were impact damaged at a variety of energy levels, and the pulse thermography nondestructive evaluation approach was used to characterize the damaged areas. The damaged beams were subjected to compression tests to evaluate their residual properties. As expected, both the beam maximum load and residual stiffness decreased with the increase in damage size. The damage growth rates under different load levels were investigated in fully reversed torsional fatigue tests. The fatigued beams were also characterized for their residual compression properties, which were then compared with those of the unfatigued beams. The results will be used to develop computer-aided engineering models to predict the residual strength and fatigue life of damaged composite components.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call