Abstract

Trichothecium roseum is one of the most important postharvest pathogens in arid and semiarid regions. Sodium silicate (NaSi) and environmental pH have significant inhibitory effects on fungal growth. However, no study has addressed the relationship of NaSi and pH in combination and the effects on T. roseum. In this work, we showed that spore germination, germ tube elongation, and mycelial growth of T. roseum were significantly inhibited by various NaSi concentrations, which had corresponding increasing pHs. Furthermore, these NaSi solutions showed a much greater impact than did pH treatments alone. The pathogenicity of NaSi-treated conidia on a model assay (conidia-inoculated apple fruit) was dramatically reduced, whereas no changes of pathogenicity were evident for the corresponding pH (various sodium hydroxide (NaOH) solutions) treatments. Fluorescent microscopy, using propidium iodide staining, showed damage of the plasma membranes of T. roseum conidia treated with both NaSi and NaOH, although the damage was more severe with NaSi. Leakage of proteins and sugars was significantly higher in NaSi-treated and NaOH-treated conidia than in untreated controls. In addition, serious damage was observed in the conidia exposed to NaSi for longer periods of time. Ultrastructural observations showed that treatment with either NaSi or NaOH caused a plasmolysis state and disorganized organelles. Taken together the results show that NaSi has inhibitory effects on T. roseum and that the inherent higher pH of NaSi solutions of higher concentrations simply acts as an enhancer of the inhibitory effects of NaSi.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.