Abstract

The effect of treating mitochondria with visible light above 400 nm on electron transport and coupled reactions was examined. The temporal sequence of changes was: stimulation of respiration coupled to ATP synthesis, a decline in ATP synthesis, inactivation of respiration, increased ATPase activity and, later, loss of the membrane potential. Loss of respiration was principally due to inactivation of dehydrogenases. Of the components of dehydrogenase systems, flavins and quinones were most susceptible to illumination, the iron-sulfur centers were remarkably resistant to being damaged. Succinate dehydrogenase was inactivated before choline and NADH dehydrogenase. Redox reactions of cytochromes and cytochrome c oxidase activity were unaffected. Inactivation was O 2-dependent and prevented by anaerobiosis or the presence of substrates for the dehydrogenases. Light in the range 400–500 nm was most effective and the presence of free flavins greatly enhanced inactivation of all of the above mitochondrial activities. This suggests that visible light mediates a flavin-photosensitized reaction that initiates damage involving participation of an activated species of oxygen in the damage propagation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.