Abstract
We have investigated the role of two selected amino acids, glycine and arginine, on damage induced to a short chain of single stranded DNA, the tetramer GCAT, during 1 eV electron exposure. At this energy, DNA has a high cross section for DNA damage via exclusively dissociative electron attachment. Surprisingly, at low ratios of glycine:GCAT, an increase in the total fragmentation yield is observed, whilst at higher ratios, glycine and arginine appear to protect DNA from the direct action of electrons. In addition, binding energies were calculated by molecular modelling of the interactions between these amino acids and either nucleobases or nucleotides. These binding energies appear to be related to the ability of amino acids to protect DNA against low energy electron damage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.