Abstract

We introduce a new damage spreading algorithm which is able to capture both the long-time and short-time dynamics of extended systems which evolves towards a critical statistically stationary state. In this sense, the dynamics of systems exhibiting self-organized critical states is shown to be similar to the one observed at the usual critical point of continuous phase transitions and at the onset of chaos of nonlinear low-dimensional dynamical maps. The proposed algorithm is applied to the Bak–Sneppen model of biological evolution and the ballistic deposition model of surface growth. The critical dynamics of these models are discussed within the framework of a nonextensive statistics formalism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.