Abstract

A random aggregate algorithmic method and a numerical model for two-phase materials (composed of quartz and plagioclase) with different discontinuous ratios and irradiation times were studied based on the discrete element method using two-dimensional particle flow code (PFC2D). The results showed that this algorithm can simulate random irregular aggregate shapes. Furthermore, crack initiation and development and the coalescence process of microwave-induced material damage could be predicted using the discrete element method. After analysis of this study, the micro crack originated from the boundary of the high-absorption-phase plagioclase crystal and expanded around the plagioclase, extending into the quartz material. The crack morphology presented a radial network.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.