Abstract

Carbon nanotube networks have been used previously for in situ sensing of matrix damage in fiber-reinforced composites. In this research, the ability of carbon nanotube networks to sense and distinguish different types of damage in adhesively-bonded hybrid composite-to-metal joints is evaluated. Toward this end, conductive networks of carbon nanotubes are introduced to the composite substrate as well as the epoxy adhesive. By altering the geometry and chemically treating the steel substrate surface, different failure mechanisms of the single-lap shear joints are achieved. It is demonstrated that these failure mechanisms each possess a distinct resistance response, therefore proving the ability to not only sense failure in situ, but also to distinguish the extent and nature of damage which occurs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.