Abstract

Damage is inflicted in a series of carbon fiber/epoxy composite specimens using a simulated lightning strike generator in the effort to understand the fundamental damage response of this material form. The strikes up to 50,000 A and 28,000 V are inflicted on both pristine specimens and specimens containing a Hilok stainless steel fastener. Damage area is evaluated via ultrasonic scanning, and advanced optical microscopy is used to gain further understanding in the morphology of damage. Subsequent mechanical testing to assess the residual tensile and compressive strength and modulus of the material is performed according to ASTM standards. Results show that residual tension strength counter intuitively increases after the infliction of damage, while residual compressive strength is much more dramatically and negatively affected. Furthermore, the presence of the fastener influences dramatically both the state of damage in the specimen and its residual strength by spreading throughout the thickness rather than limiting it to the specimen surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.