Abstract

Radiation damage parameters in SiC/SiC composite structures are determined in both magnetic (MFE) and inertial (IFE) confinement fusion systems. Variations in the geometry, neutron energy spectrum, and pulsed nature of neutron production result in significant differences in damage parameters between the two systems. With the same neutron wall loading, the displacement damage rate in the first wall in an IFE system is ∼10% lower than in an MFE system, while gas production and burnup rates are a factor of 2 lower. Self-cooled LiPb and Flibe blankets were analyzed. While using LiPb results in higher displacement damage, Flibe yields higher gas production and burnup rates. The effects of displacement damage and helium production on defect accumulation in SiC/SiC composites are also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.