Abstract

Environmental barrier coatings (EBCs) are used as a coating material on fiber-reinforced ceramic matrix composites (CMC) for various aerospace and turbine engines applications. In order to validate physics-based analytical models for predicting the spallation life of EBCs, the fracture strength of the EBC and the kinetics of crack growth in EBC layers need to be experimentally determined under engine operating conditions. In this study, a coating layer of barium strontium aluminum silicate (BSAS)–based melt-infiltrated silicon carbide fiber-reinforced silicon carbide matrix composite (MI SiC/SiC) is applied on a CMC specimen and tensile tested at room temperature. Multiple tests are performed on a single specimen with increasing predetermined stress levels until final failure. Damage progression due to the load applied is monitored using a digital image correlation (DIC) system. After unloading from the predetermined stress levels, the specimen is evaluated by optical microscopy and computed tomography (CT). The inspection forms the imaging which implied that primary and secondary cracks developed during tensile loading until failure. DIC showed formation of a primary crack at ~50% of the ultimate tensile strength, and this crack grew with increasing stress and eventually led to final failure of the specimen.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call