Abstract
Externally bonded (EB) carbon fiber reinforced polymer (CFRP) is widely used in structural strengthening and retrofitting. Premature debonding of the FRP severely limits the efficiency of CFRP utilization. The application of CRRP anchorage system offers a solution to the debonding problem. However, the understanding of damage mode identification of this combined system still remains elusive. Acoustic emission (AE) technique is employed to identify the damage mode of this CFRP anchorage system, due to its high sensitivity and the ability to detect damage in real-time. The objective of the current study is to identify the failure mechanisms of CFRP-strengthened beam by applying advanced pattern recognition techniques to the collected AE data. Firstly, four-point test of CFRP-strengthened beam was carried out until failure with simultaneous recording of AE signals. Then, correlation analysis was adopted to select the AE characteristic parameters, and principal component analysis (PCA) was used for dimensionality reduction. Lastly, the AE signals of the CFRP-strengthened beam was clustered to track the evolutionary behavior of the different damage modes by Gaussian mixture model (GMM) algorithm. Three main damage modes of CFRP-strengthened beam were identified by GMM clustering: concrete cracking, debonding of CFRP sheet and fracture of CFRP sheet. This study explores the damage evolution mechanism of combined system and provides a basis for achieving health monitoring of CFRP-strengthened structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.