Abstract

In this work an integrated computational/experimental approach was developed to validate the predictive capabilities of State-of-the-Art (SoA) Progressive Damage Analysis (PDA) methods and tools. Specifically, a tapered composite structure incorporating ply-drops typical in the aerospace industry to spatially vary structural thickness was tested under static tension and cyclic tension fatigue loads. The data acquired from these tests included quantitative metrics such as pre-peak stiffness, peak load, location of delamination damage onset, and growth of delaminations as functions of applied static and fatigue loads. It was shown that the PDA tools were able to predict the pre-peak stiffness and peak load within ±10% of experimental average, thereby meeting and exceeding the pre-defined success criteria. Additionally, it was shown that the PDA tools were able to accurately predict the location of delamination onset and satisfactorily predict delamination growth under static tension loading. Overall, good correlations were achieved between modeling and experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call