Abstract
Damage to optical materials under intense photon irradiation has always been a major problem in the design and operation of high-energy and high-average-power lasers. In short-wavelength lasers, operating at visible and ultraviolet wavelengths, the problem appears to be especially acute; presently attainable damage thresholds seriously compromise the engineering design of laser windows and mirrors, pulsed power trains and oscillator-amplifier systems architecture. Given the present interest in ultraviolet excimer lasers and in short-pulse, high-power free-electron lasers operating at visible and shorter wavelengths, the “optical damage problem” poses a scientific and technological challenge of significantdimensions. The solution of this problem even has significant implications outside the realm of lasers, for example, in large space-borne systems (such as the Hubble Telescope) exposed to intense ultraviolet radiation.The dimensions of the problem are illustrated by the Large-Aperture krypton-fluoride laser amplifier Module (LAM) shown schematically in Figure 1. This device, now operating at the Los Alamos National Laboratory, is typical of current and planned large excimer lasers for fusion applications. The LAM has an active volume of some 2 m3, and optical surfaces (resonator mirror and windows) exceeding 1 m2 in size; the fabrication of these optical elements was the most expensive and time-consuming single item in the construction of the laser. During laser operation, a population inversion in an Ar-Kr-F2 mix ture is created through electron-beam excitation of the laser gas by two 400 kA beams of 650 keV electrons from a cold cathode discharge. The electron trajectories in the gas are constrained by a 4 kG magnetic field transverse to the optical axis produced by a pair of large Helmholtzcoils.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.