Abstract

Interruptions of the passive layer of stainless steels by cavitation erosion expose the bare metal surface to the environment and can lead to cavitation-erosion-corrosion damage and synergistic effects. However, the probability for pitting corrosion is decreased during cavitation exposure of stainless steels in chloride solutions because mechanical passive film removal shifts corrosion potentials to lower cathodic values. In this study, the impact of 3.5 wt% NaCl in water on mass loss and damage features of two austenitic stainless N-containing steels is investigated to amend the understanding of cavitation erosion of passivating steels. Ultrasonic cavitation tests were carried out on steels 316LVM and CNMo0.95 in distilled water and 3.5% NaCl solution. Exposed surfaces were characterized qualitatively by light- and electron-microscopy and quantitatively by confocal microscopy. Damage mechanisms vary between the two steels but not with NaCl content in the solution. 316LVM also displayed the same mass loss in both solutions. CNMo0.95 possesses twice the strength as 316LVM, resulting in lower intensities of ductile damage mechanisms and slower damage progression. Mass loss of CNMo0.95 was lower in 3.5% NaCl solution compared to distilled water, which was primarily assigned to the effect of the salt content in the water on cavitation bubble formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.