Abstract

In this paper, the static and fatigue behavior of flax fiber-reinforced composites with and without an interleaved natural viscoelastic layer are investigated. Viscoelastic composite plates consist of a soft natural viscoelastic layer which is confined between two identical flax fiber reinforced composites. Different stacking sequences of specimens are tested with uniaxial tensile loading until failure. The mechanical behavior and the acoustic activity of damage sources in various configurations with and without a viscoelastic layer are compared. The analysis of acoustic emission signals and the macroscopic and microscopic observations led to the identification of the main acoustic signatures of different damage modes dominant in each type of composites (with and without a viscoelastic layer). These results allow better identification of the influence of the impact of a viscoelastic layer on the mechanical behavior of different composites. In addition, static and fatigue flexural behavior of unidirectional composites with and without viscoelastic layer are characterized in 3-point bending tests. The effects of viscoelastic layer on the stiffness, hysteresis loops, and loss factor are studied for various numbers of cycles during cyclic fatigue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.