Abstract

The incorporation of reactive material damage element technology in ammunition warheads is a research hotspot in the development of conventional ammunition. The research results are of great significance and military application value to promote the development of high-efficiency damage ammunition technology. In this paper, we aimed to understand the behavior of the reactive jet and its damage effect on a steel target by undertaking theoretical analysis, numerical simulation, and experimental research. We studied the influence of structural and material parameters on the shape of the reactive jet based on autodyn-2d finite element simulation software, and the formation behavior of the reactive jet was verified using a pulsed X-ray experiment. By studying the combined damage caused by the steel target penetrating and exploding the reactive jet, the influence of the structural and performance parameters, and the explosion height of the reactive jet liner on the damage effect to the steel target was studied. A static explosion experiment was carried out, and the optimal structural and performance parameters for the reactive material and explosion height of the reactive jet liner were obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.