Abstract

WIt has great environmental potential to replace natural aggregates by recycled brick aggregates. To investigate the deterioration mechanism of recycled brick aggregate concrete, this paper designed eight groups of recycled brick aggregate sub-lightweight concrete with different water-cement ratios, maximum aggregate sizes and coarse aggregate type ratios, and carried out mechanical property test to analyze the aggregate interface characteristics and the damage mechanism of recycled brick aggregate concrete. The results show that the increase of replacement ratio and water-cement ratio leads to a significant decrease of compressive strength and splitting tensile strength of concrete, and the influence of the maximum aggregate size on strength is small. Unlike the recycled concrete aggregate - mortar interface, the microstructure of recycled brick aggregate - mortar interface is dense and the interface performance is enhanced. Recycled brick aggregate concrete is in non-interface damage mode, and the strength of brick aggregate is the main influence to determine the mechanical properties of concrete factor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.