Abstract
The design of adhesively joined components requires the ability to predict and model the joint response under expected operating conditions, including crash events for vehicle structures. Specifically, quantifying adhesive material damage accumulation from static and dynamic loading is essential to predict the response of bonded components in such scenarios. In this study, Vickers microhardness measurements were used as a forensic technique to quantify damage in bulk tensile samples for three structural epoxy adhesive materials: an untoughened epoxy; a toughened epoxy; and a high toughness epoxy. The samples were tested to failure over a range of strain rates (0.002–100 s−1), and hardness measurements were taken post-test along the gauge length. In general, for toughened epoxies the damage extended over much of the sample gauge length, while the un-toughened epoxy demonstrated damage localization at the failure location. The hardness data support the contention that mechanisms such as crazing and shear banding play a role in microhardness changes in toughened epoxies. Increments in strain rate led to an increase in the damage localization. Microhardness measurements were a valuable tool to quantify damage, with the limitation that the magnitude of change in hardness could be adhesive-specific, hypothesized to be related to competing damage mechanisms. The benefits of this approach include the ability to spatially quantify damage, to detect strain rate effects and to carry out measurement of damage post-test in support of constitutive modeling and failure analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.