Abstract

This paper presents the effect of nanoscale damage layer on magnetic results obtained from the optimization of media overcoat deposition parameters on the top magnetic layer on magnetic hard disks. We have investigated the effects of interface interaction between the overcoat deposition parameters on the top magnetic layer on the media by using a plasma enhanced chemical vapor deposition (PECVD) on next generation hard disks. The goal is to achieve a reduced damage layer, lower head media spacing (HMS) and a higher spectrum of signal to noise ratio (SpSNR) optimized by using Taguchi experimental design with a four-factor three-level (L9) orthogonal array. An analysis of variance (ANOVA) was carried out to interpret the measured coercivity (Hc), HMS and SpSNR. It was found that source gas type is the most significant factor with a percentage contribution effect of 59.8% on HMS and 51.7% on SpSNR. The bias voltage is the second most significant factor with its percentage contribution being 24.2% on HMS and 31.0% on SpSNR. Overall, the optimum SpSNR was obtained using a C2H2 source gas, −100V bias voltage, 50V anode voltage and 20sccm gas flow rate, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.