Abstract

The change in optical transmittance of JGS3 optical quartz glass was studied using ground simulation for the space environment conditions of high vacuum, heat sink, and 140 keV low energy protons and the kinetic model for the evolution of color centers in the process of radiation damage was explored. The experimental results show that radiation damage occurs in the surface layer of quartz glass under large flux and low-energy proton radiation. The optical den- sity change increases rapidly and then a saturation trend appears with increasing absorption dose. A kinetic model for the evolution of color centers in quartz glass irradiated with protons is proposed based on experimental data, from which the change in optical density can be given. The model fitted curve is similar to ex- perimental ones. It is believed that the proposed kinetic model can be used in the quantitative description for the change in optical property of quartz glass with increasing absorption dose under proton radiation with low energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.