Abstract
Abstract The two-dimensional finite strain constitutive model for membranes is presented; it incorporates stress-softening behaviour typically observed in elastomeric and natural or biologically-derived soft membranes subjected to severe deformations. It is assumed that the experimentally observed progressive degradation of a membrane stiffness under monotonous and cycling loading can macroscopically be modelled by a scalar damage variable. The evolution of this variable during the deformation process is specified by the kinetic law of damage growth, which together with the constitutive equation for the surface stress tensor and the damage criteria completely determines the presented constitutive model. It is shown that the general constitutive model can be specified for particular classes of problems under certain additional assumptions. In particular, a remarkable simplification of the model is achieved assuming that the state of strain at membrane points can be characterised by a single scalar variable...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.