Abstract

In the current study, a finite element model was established to simulate the penetration process of composite laminates under high-velocity impact. A 3D rate-dependent damage constitutive model was developed to simulate the ballistic response of unidirectional fiber-reinforced composite laminate. Numerical models were built based on a damage model where cohesive contact method was involved. The user-developed FORTRAN subroutine (VUMAT) was written and implemented in ABAQUS/Explicit 6.11 version. The ballistic resistance and damage characteristics of composite laminate were discussed, and the damage model was validated. The results of the FEM were observed to agree well with experimental observation. According to the results, the ply angle of the laminate had great influence on the damage distribution; thus, when the ply angle increases, the ballistic resistance and damage areas on both front and rear side of the laminate decrease. Again, the result shows that increasing the thickness of the laminate was advantageous to the ballistic resistance and damage characteristics of the composite laminates. The prediction of the model was proved to have good accuracy and efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.